
Scope
The target of the audit was two golang projects:

• git revision ce779395f4c98898f21f8c49f71f4b3353995127 of 
https://github.com/privacybydesign/gabi/

• git revision 36ab84c97ac789aa4df4a03fbf7ea66fe6ab341e of 
https://github.com/privacybydesign/irmago/

gabi implements the cryptographic core of IRMA - a slight variant of the IDEMIX 
protocol. We verified that the implementation actually matches the specification 
as given. During our gabi audit we primarily focused on information leakage.

irmago implements a higher layer on top of gabi enabling the protocol to be used
by UI frontends. Our focus was logic bugs and any bugs that violate availability 
and the security properties of idemix.

Team
The audit was conducted by:

• Jonathan Levin
• Stefan Marsiske

Timespan
The audit was conducted between 2020-02-01 and 2020-03-31

Results Summary
We found only six issues in total in gabi, the most critical ones being imposed by 
the language itself, which considers information leakage out of scope of memory 
safety and timing side channels out of scope of their cryptographic modules. This
resulted in non-constant time exponentiations using secret key material. We also 
found some unnecessarily lax file system permissions on public and private keys 
stored by gabi. All reported gabi issues can be seen here: 
https://github.com/privacybydesign/gabi/issues?q=is%3Aissue+author%3Astef

In irmago we found a few interesting issues revolving around the updating of 
scheme managers. Timestamps on schemes were not signed (and therefore also 
not checked for validity), providing a downgrade attack to old schemes. 
Furthermore, in the presence of a successful MiTM, a TOCTOU issue during 
scheme updates can also lead to an arbitrary file write over the network attack. 

We also found the authentication around the keyshare server to be comparatively
simple, relying on a single SHA-256 hash of the user's PIN. We found a simple 

https://github.com/privacybydesign/gabi/
https://github.com/privacybydesign/gabi/issues?q=is%3Aissue+author%3Astef
https://github.com/privacybydesign/irmago/


way to DoS users out of their accounts by maxing out the PIN attempts of 
another user. We encountered some low importance issues like the recurring 
theme of unbounded reading from file descriptors. Finally, we suggested 
improvements to the TLS configuration specified in irmago, which did not 
support all TLSv1.3 ciphersuites.

Methodology
We did a thorough reading of all the source code. First we conducted a breadth-
first approach, highlighting interesting/security-sensitive locations in the code, 
and noting questions we had. We consulted regularly with the Project Manager 
of the IRMA project Sietse Ringers to verify our understanding. After the first 
pass we went into each noted location and examined them in depth, writing test 
code to verify expected behavior when needed. We also used some static analysis
tools such as gosec (https://github.com/securego/gosec) and staticcheck 
(https://staticcheck.io/). These static analysis tools did not reveal any novel 
issues.

Conclusion
The choice to use golang eliminated the bug class of buffer overflows. While this 
is definitely a good thing, it also introduced issues regarding leakage of sensitive 
information (using https://github.com/awnumar/memguard for protecting 
sensitive data in RAM is warmly recommended). This also provides the RU with a
low-hanging fruit of implementing time-safe modular exponentiation, 
multiplication and GCD for golang or use and collaborate with 
https://github.com/coyim/constbn/ establishing a robust base for cryptographic 
math with constant time requirements. With respect to the higher level 
framework provided by irmago, there are a few functions that use keys and other
cryptographic functionalities that are not part of the Idemix protocol, and these 
lack a proper key-lifecycle or modern primitives (e.g., the simple pin-based 
authentication scheme towards keyshare servers).

Appendix
Our notes that we took during our audit can be found in the accompanying org-
mode document which can be found here in HTML format.

https://privacybydesign.foundation/reviews/irmago-gabi-audit/
https://github.com/coyim/constbn/
https://github.com/awnumar/memguard
https://staticcheck.io/
https://github.com/securego/gosec

	Scope
	Team
	Timespan
	Results Summary
	Methodology
	Conclusion
	Appendix

